Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Petr S. Berdonosov,* Olga S. Oleneva and Valery A. Dolgikh

Department of Chemistry, Moscow State University, Leninskie Gory 1 build. 3 GSP-2, 119992 Moscow, Russian Federation

Correspondence e-mail:
psberd@inorg.chem.msu.ru

## Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{e}-\mathrm{O})=0.006 \AA$
$R$ factor $=0.044$
$w R$ factor $=0.095$
Data-to-parameter ratio $=26.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Tricaesium undecalanthanum dodecaselenate(IV) dodecachloride

The structure of the title compound, $\mathrm{Cs}_{3} \mathrm{La}_{11}\left(\mathrm{SeO}_{3}\right)_{12} \mathrm{Cl}_{12}$, consists of complex slabs of composition $\left[\mathrm{La}_{22}\left(\mathrm{SeO}_{3}\right)_{24}\right]$ that are stacked along the $a$ axis and are separated by sublayers of either chloride anions or caesium chloride. All $\mathrm{SeO}_{3}$ groups show the typical pyramidal shape. The $\mathrm{Se}-\mathrm{O}$ bond distances vary from 1.672 (6) to 1.747 (6) Å.

## Comment

Inorganic compounds with various anions attract attention because of the features of their crystal chemistry (Berdonosov et al., 2000; Ruck \& Schmidt, 2003; Lipp \& Schleid, 2005; Ben Hamida \& Wickleder, 2005). Therefore, we have systematically investigated the structural peculiarities of halideselenates(IV) with complex cation compositions.

A view of the crystal structure of $\mathrm{Cs}_{3} \mathrm{La}_{11}\left(\mathrm{SeO}_{3}\right)_{12} \mathrm{Cl}_{12},(\mathrm{I})$, is shown in Fig. 1. Compound (I) contains six crystallographically independent La atoms, three Cs atoms, six Se atoms, 18 O atoms and nine Cl atoms. Atoms La 1 and La 2 are surrounded by four O atoms and four chloride anions, forming a distorted square antiprism ( $4+4$ coordination) (Fig. 2); this is similar to the coordination of La in LaOCl (Hölsä et al., 1997). Other La atoms in (I) have oxygen-only coordination, with shortest interatomic distances of $\sim 2.49 \AA$ and other O atoms at distances ranging from $\sim 2.55$ to $2.80 \AA$ (Table 1). The bond-valence-sum approach (Brese \& O'Keeffe, 1991) was used to determine the coordination around atoms La3-La6. The bond-valence sum $v_{i}$ for La6 is $\sim 3$ if eight O atoms are included in the coordination polyhedron. For the other La atoms (La3-La5), 10 O atoms should be considered (Fig. 2). All Se atoms have three O atom neighbors. The $\mathrm{SeO}_{3}{ }^{2-}$ ions exhibit a typical pyramidal shape due to the electron lone pair of the Se atom. Cs atoms have only chlorine neighbours at distances of 3.424 (6)-3.649 (3) A (Table 1).

The $\mathrm{La} 4 \mathrm{O}_{10}$ and $\mathrm{La} 5 \mathrm{O}_{10}$ polyhedra form infinite chains along the $b$ axis by sharing common edges. The ${\mathrm{La} 3 \mathrm{O}_{10}}$ and $\mathrm{La} 6 \mathrm{O}_{8}$ polyhedra form a similar set of chains that are also parallel to $b$. Both types of chains are linked via common edges of the $\mathrm{La} 6 \mathrm{O}_{8}$ and $\mathrm{La} 4 \mathrm{O}_{10}$ polyhedra as well as common faces of the $\mathrm{La} 3 \mathrm{O}_{10}$ and $\mathrm{La} 5 \mathrm{O}_{10}$ polyhedra, forming a layer parallel to the $b c$ plane (Fig. 2). A set of such layers forms pairs connected to each other by the $\mathrm{La}_{1} \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms. The bases of these antiprisms are formed by O atoms originating from the top and bottom layers. The antiprisms are arranged along the $a$ axis in opposite directions. The bases of the $\mathrm{La} 1 \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms, formed by Cl atoms from different layers, are directed towards each other, and one of their edges is shared with the 'upper' $\mathrm{La}_{1} \mathrm{O}_{4} \mathrm{Cl}_{4}$ polyhedron. The La 2 atoms are situated above and below such double blocks. The $\mathrm{La} 2 \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms share their oxygen vertices with different

Received 29 November 2005
Accepted 17 January 2006

La-O blocks formed by La3, La4, La5 and La6 polyhedra, whereas the $\mathrm{La}_{1} \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms are connected by Cl atoms only.

The $\mathrm{SeO}_{3}$ pyramids may be considered as additional links between the lanthanum oxide layers. They share common edges with one polyhedron and common vertices with other polyhedra from this layer.

Along the $a$ axis, the double layers are separated by layers of Cs atoms. The bases of the $\mathrm{La}_{2} \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms that are made up of Cl atoms are situated above and below the layers. According to the bond-valence calculations, the suggested coordination number is 6 (distorted triangular prism) for Cs 1 and 8 (distorted cube) for Cs 2 and Cs 3 (Table 1). The ${\mathrm{Cs} 1 \mathrm{Cl}_{6}}^{\text {( }}$ prism is connected with the $\mathrm{CsCl}_{8}$ cubes through common edges. Two $\mathrm{Cs} 2 \mathrm{Cl}_{8}$ and two $\mathrm{Cs}^{2} \mathrm{Cl}_{8}$ units form a group of four polyhedra with common faces. Such quadruplets are joined by sharing edges with four other [ $2 \mathrm{Cs} 2 \mathrm{Cl}_{8} 2 \mathrm{Cs}^{2} \mathrm{Cl}_{8}$ ] quadruplets and four ${\mathrm{Cs} 1 \mathrm{Cl}_{6}}^{6}$ prisms. As a result, the described polyhedra form a layer which shares $\mathrm{Cl}-\mathrm{Cl}$ edges with the $\mathrm{La} 2 \mathrm{O}_{4} \mathrm{Cl}_{4}$ antiprisms, thus forming a framework structure (Fig. 2).

The crystal structure of (I) may be considered to be similar to those of $\mathrm{Bi}_{8}\left(\mathrm{SeO}_{3}\right)_{9} \mathrm{Br}_{6}$ or $\mathrm{Sm}_{21} \mathrm{Cs}\left(\mathrm{SeO}_{3}\right)_{24} \mathrm{Br}_{16}$, described by Ruck \& Schmidt (2003). In (I), CsCl slabs separate blocks of composition $M_{8}\left(\mathrm{SeO}_{3}\right)_{9} X_{6}$, where $X=\mathrm{Br}$ in the $\mathrm{Bi}_{8}\left(\mathrm{SeO}_{3}\right)_{9} \mathrm{Br}_{6}$ structure. Another related compound is $\mathrm{Rb}_{6} \mathrm{LiNd}_{11} \mathrm{Cl}_{16}\left(\mathrm{SeO}_{3}\right)_{12}$ (Lipp \& Schleid 2005). It contains only RbCl slabs which separate blocks with composition $\left[\mathrm{Nd}_{29} \mathrm{Li}_{4} \mathrm{O}_{8}\left(\mathrm{SeO}_{3}\right)_{24}\right]$, analogous to the 'triple sublayers' in Fig. 2. In the $\mathrm{Rb}_{6} \mathrm{LiNd}_{11} \mathrm{Cl}_{16}\left(\mathrm{SeO}_{3}\right)_{12}$ structure, small Li atoms are regularly situated in metal-selenium-O-atom blocks, whereas in the case of $\mathrm{Sm}_{21} \mathrm{Cs}\left(\mathrm{SeO}_{3}\right)_{24} \mathrm{Br}_{16}$, the Cs atom is statistically distributed in similar blocks.

## Experimental

The title compound was obtained in an evacuated silica ampoule from a mixture of high purity $\mathrm{LaOCl}, \mathrm{SeO}_{2}$ and CsCl in a 1:1:1 molar ratio. The reaction mixture was heated to 923 K and was then cooled to 473 K at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$. The product was washed with distilled water and ethanol. Small plate-shaped colorless, transparent crystals were selected from the washed and dried product.

## Crystal data

$\mathrm{Cs}_{3} \mathrm{La}_{11}\left(\mathrm{SeO}_{3}\right)_{12} \mathrm{Cl}_{12}$
$M_{r}=3875.66$
Orthorhombic, Cmca
$a=43.176$ (8) A
$b=16.073$ (2) A
$c=16.037$ (2) $\AA$
$V=11129(3) \AA^{3}$
$Z=8$
$D_{x}=4.626 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Bruker SMART APEX CCD
$\quad$ diffractometer
$\omega$ scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1998$)$
$\quad T_{\min }=0.245, T_{\max }=0.393$
30595 measured reflections

Bruker SMART APEX CCD
diffractometer

Absorption correction: multi-scan
(SADABS, Sheldrick, 198 )
30595 measured reflections

## Mo $K \alpha$ radiation

Cell parameters from 7054 reflections
$\theta=2.5-28.2^{\circ}$
$\mu=18.69 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colorless
$0.09 \times 0.08 \times 0.05 \mathrm{~mm}$

6572 independent reflections
4369 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-55 \rightarrow 52$
$k=-20 \rightarrow 21$
$l=-14 \rightarrow 20$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.095$
$S=1.00$
6572 reflections
253 parameters

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0334 P)^{2}\right. \\
\quad+133.1504 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=2.20 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-2.19 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| La1-O6 ${ }^{\text {i }}$ | 2.416 (6) | La5-O15 | 2.597 (6) |
| :---: | :---: | :---: | :---: |
| La1-O4 | 2.416 (6) | La5-O1 | 2.616 (6) |
| La1-O18 ${ }^{\text {i }}$ | 2.478 (6) | La5-O2 | 2.621 (7) |
| La1-O3 | 2.519 (6) | La5-O3 | 2.679 (6) |
| La1-Cl3 | 2.999 (2) | La5-O18 ${ }^{\text {iv }}$ | 2.702 (6) |
| La1-C19 | 3.0263 (16) | La6-O17 | 2.444 (6) |
| La1-Cl8 | 3.051 (2) | La6-O7 | 2.451 (7) |
| La1-Cl2 | 3.1077 (6) | La6-O10 | 2.478 (7) |
| La2-O11 | 2.492 (6) | La6-O12 | 2.493 (6) |
| La2-O5 | 2.496 (6) | Se1-O17 | 1.691 (6) |
| $\mathrm{La} 2-\mathrm{O} 2$ | 2.526 (6) | Se1-O13 | 1.714 (6) |
| La2-O1 | 2.538 (6) | $\mathrm{Se} 1-\mathrm{O} 1$ | 1.733 (6) |
| La2-Cl4 | 2.862 (3) | Se2-O12 | 1.681 (6) |
| La2-C17 | 2.865 (3) | Se2-O16 | 1.699 (6) |
| La2-Cl6 | 2.944 (3) | Se2-O18 | 1.747 (6) |
| La2-Cl1 | 2.9855 (15) | Se3-O4 | 1.706 (6) |
| La3-O9 | 2.488 (6) | Se3-O6 | 1.708 (6) |
| La3-O8 ${ }^{\text {ii }}$ | 2.490 (6) | Se3-O15 | 1.711 (7) |
| La3-O5 | 2.507 (6) | Se4-O7 | 1.679 (6) |
| La3-O6 | 2.563 (6) | Se4-O8 | 1.708 (6) |
| La3-O17 | 2.589 (6) | Se4-O2 | 1.741 (6) |
| La3-O1 | 2.614 (6) | Se5-O5 | 1.697 (6) |
| La3-O12 | 2.645 (6) | Se5-O11 ${ }^{\text {i }}$ | 1.705 (6) |
| La3-O18 | 2.664 (6) | Se5-O14 | 1.721 (6) |
| La3-O14 | 2.755 (6) | Se6-O10 | 1.672 (6) |
| La3-O15 | 2.776 (6) | Se6-O9 | 1.705 (6) |
| La4-O11 | 2.510 (6) | Se6-O3 | 1.729 (6) |
| $\mathrm{La} 4-\mathrm{O} 6^{\text {iii }}$ | 2.521 (6) | Cs1-Cl7 ${ }^{\text {v }}$ | 3.424 (3) |
| La4-O4 | 2.575 (6) | $\mathrm{Cs} 1-\mathrm{Cl}_{4}{ }^{\text {vi }}$ | 3.428 (3) |
| La4-O7 | 2.591 (7) | $\mathrm{Cs} 1-\mathrm{Cl}_{1}{ }^{\text {vi }}$ | 3.446 (2) |
| La4-O2 | 2.602 (7) | $\mathrm{Cs} 1-\mathrm{Cl}^{\text {vii }}$ | 3.649 (3) |
| La4-O10 | 2.618 (6) | $\mathrm{Cs} 2-\mathrm{Cl}^{\text {vii }}$ | 3.458 (3) |
| La4-O3 | 2.644 (6) | $\mathrm{Cs} 2-\mathrm{Cl}^{\text {vii }}$ | 3.502 (3) |
| La4-O15 | 2.765 (6) | $\mathrm{Cs} 2-\mathrm{Cl}^{\text {viii }}$ | 3.545 (3) |
| La4-O14 ${ }^{\text {iv }}$ | 2.790 (6) | $\mathrm{Cs} 2-\mathrm{Cl} 4^{\text {iv }}$ | 3.634 (3) |
| La5-O8 | 2.531 (6) | $\mathrm{Cs} 3-\mathrm{Cl} 4{ }^{\text {vii }}$ | 3.457 (3) |
| La5-O13 | 2.535 (6) | Cs3-Cl6 ${ }^{\text {vii }}$ | 3.502 (3) |
| La5-O14 ${ }^{\text {iv }}$ | 2.561 (6) | $\mathrm{Cs} 3-\mathrm{Cl}^{\text {ix }}$ | 3.545 (3) |
| La5-O9 | 2.567 (6) | $\mathrm{Cs} 3-\mathrm{Cl}^{\text {v }}$ | 3.632 (3) |
| La5-O16 ${ }^{\text {iv }}$ | 2.572 (6) |  |  |
| O17-Se1-O13 | 103.6 (3) | O7-Se4-O8 | 103.4 (3) |
| O17-Se1-O1 | 93.7 (3) | O7-Se4-O2 | 93.3 (3) |
| O13-Se1-O1 | 94.5 (3) | O8-Se4-O2 | 94.9 (3) |
| O12-Se2-O16 | 104.4 (3) | O5-Se5-O11 ${ }^{\text {i }}$ | 106.6 (3) |
| $\mathrm{O} 12-\mathrm{Se} 2-\mathrm{O} 18$ | 94.8 (3) | O5-Se5-O14 | 95.0 (3) |
| O16-Se2-O18 | 95.2 (3) | O11-Se5-O14 | 96.1 (3) |
| O4-Se3-O6 | 106.9 (3) | O10-Se6-O9 | 105.4 (3) |
| O4-Se3-O15 | 96.3 (3) | O10-Se6-O3 | 95.0 (3) |
| O6-Se3-O15 | 95.3 (3) | O9-Se6-O3 | 95.9 (3) |

Symmetry codes: (i) $x,-y,-z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x,-y+1,-z+1$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $-x, y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $-x,-y+\frac{1}{2}, z-\frac{1}{2}$; (vii) $-x, y, z$; (viii) $-x,-y,-z$; (ix) $-x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Note that, according to the latest edition of the International Tables for Crystallography (2002, 5th ed.), the Hermann-Maugin symbol for space group Cmca has been modified to Cmce. Except for the O atoms, all atoms were refined with anisotropic displacement parameters. The highest peak is located $3.13 \AA$ from atom La2 and the deepest hole $0.92 \AA$ from Cs2.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to


Figure 1
View of the crystal structure of (I), projected along the $c$ axis.
refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Dr Evgeny V. Dikarev is acknowledged for his help in conducting the study. The Russian Foundation for Basic Research (under grants RFFI-DFG \# 04-03-04000 and RFFI \# 05-03-32719) is gratefully acknowledged for financial support.

## References

Ben Hamida, M. \& Wickleder, M. S. (2005). Z. Kristallogr. Suppl. 22, 165.
Berdonosov, P. S., Stefanovich, S. Yu. \& Dolgikh, V. A. (2000). J. Solid State Chem. 149, 236-241.
Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.


Figure 2
View of the polyhedra around the La atoms in (I), with the $\left[\mathrm{La}_{22}\left(\mathrm{SeO}_{3}\right)_{24}\right]$ block outlined. Displacement ellipsoids are drawn at the $95 \%$ probability level.

Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1998). SAINT (Version 6.01) and SMART (Version 5.059), Bruker AXS Inc., Madison, Wisconsin, USA.
Hölsä, J., Lastusaari, M. \& Valkonen, J. (1997). J. Alloys Compd. 262, 299-304. Lipp, C. \& Schleid, T. (2005). Z. Kristallogr. Suppl. 22, 141.
Ruck, M. \& Schmidt, P. (2003). Z. Anorg. Allg. Chem. 629, 2133-2143.
Sheldrick, G. M., (1997), SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.


[^0]:    © 2006 International Union of Crystallography All rights reserved

