Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Petr S. Berdonosov,* Olga S. Oleneva and Valery A. Dolgikh

Department of Chemistry, Moscow State University, Leninskie Gory 1 build. 3 GSP-2, 119992 Moscow, Russian Federation

Correspondence e-mail: psberd@inorg.chem.msu.ru

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (e–O) = 0.006 Å R factor = 0.044 wR factor = 0.095 Data-to-parameter ratio = 26.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

Tricaesium undecalanthanum dodecaselenate(IV) dodecachloride

The structure of the title compound, $Cs_3La_{11}(SeO_3)_{12}Cl_{12}$, consists of complex slabs of composition $[La_{22}(SeO_3)_{24}]$ that are stacked along the *a* axis and are separated by sublayers of either chloride anions or caesium chloride. All SeO₃ groups show the typical pyramidal shape. The Se–O bond distances vary from 1.672 (6) to 1.747 (6) Å.

Comment

Inorganic compounds with various anions attract attention because of the features of their crystal chemistry (Berdonosov *et al.*, 2000; Ruck & Schmidt, 2003; Lipp & Schleid, 2005; Ben Hamida & Wickleder, 2005). Therefore, we have systematically investigated the structural peculiarities of halide– selenates(IV) with complex cation compositions.

A view of the crystal structure of Cs₃La₁₁(SeO₃)₁₂Cl₁₂, (I), is shown in Fig. 1. Compound (I) contains six crystallographically independent La atoms, three Cs atoms, six Se atoms, 18 O atoms and nine Cl atoms. Atoms La1 and La2 are surrounded by four O atoms and four chloride anions, forming a distorted square antiprism (4 + 4 coordination) (Fig. 2); this is similar to the coordination of La in LaOCl (Hölsä et al., 1997). Other La atoms in (I) have oxygen-only coordination, with shortest interatomic distances of ~2.49 Å and other O atoms at distances ranging from ~ 2.55 to 2.80 Å (Table 1). The bond-valence-sum approach (Brese & O'Keeffe, 1991) was used to determine the coordination around atoms La3-La6. The bond-valence sum v_i for La6 is ~3 if eight O atoms are included in the coordination polyhedron. For the other La atoms (La3-La5), 10 O atoms should be considered (Fig. 2). All Se atoms have three O atom neighbors. The SeO_3^{2-} ions exhibit a typical pyramidal shape due to the electron lone pair of the Se atom. Cs atoms have only chlorine neighbours at distances of 3.424 (6)–3.649 (3) Å (Table 1).

The La4O₁₀ and La5O₁₀ polyhedra form infinite chains along the b axis by sharing common edges. The La3O₁₀ and La6O₈ polyhedra form a similar set of chains that are also parallel to b. Both types of chains are linked via common edges of the La6 O_8 and La4 O_{10} polyhedra as well as common faces of the La3O₁₀ and La5O₁₀ polyhedra, forming a layer parallel to the bc plane (Fig. 2). A set of such layers forms pairs connected to each other by the La1O₄Cl₄ antiprisms. The bases of these antiprisms are formed by O atoms originating from the top and bottom layers. The antiprisms are arranged along the *a* axis in opposite directions. The bases of the La1O₄Cl₄ antiprisms, formed by Cl atoms from different layers, are directed towards each other, and one of their edges is shared with the 'upper' La1O₄Cl₄ polyhedron. The La2 atoms are situated above and below such double blocks. The La2O₄Cl₄ antiprisms share their oxygen vertices with different

Received 29 November 2005 Accepted 17 January 2006

All rights reserved

La-O blocks formed by La3, La4, La5 and La6 polyhedra, whereas the La1O₄Cl₄ antiprisms are connected by Cl atoms only.

The SeO₃ pyramids may be considered as additional links between the lanthanum oxide layers. They share common edges with one polyhedron and common vertices with other polyhedra from this layer.

Along the *a* axis, the double layers are separated by layers of Cs atoms. The bases of the La2O₄Cl₄ antiprisms that are made up of Cl atoms are situated above and below the layers. According to the bond-valence calculations, the suggested coordination number is 6 (distorted triangular prism) for Cs1 and 8 (distorted cube) for Cs2 and Cs3 (Table 1). The Cs1Cl₆ prism is connected with the CsCl₈ cubes through common edges. Two Cs2Cl₈ and two Cs3Cl₈ units form a group of four polyhedra with common faces. Such quadruplets are joined by sharing edges with four other [2Cs2Cl₈2Cs3Cl₈] quadruplets and four Cs1Cl₆ prisms. As a result, the described polyhedra form a layer which shares Cl-Cl edges with the La2O₄Cl₄ antiprisms, thus forming a framework structure (Fig. 2).

The crystal structure of (I) may be considered to be similar to those of Bi₈(SeO₃)₉Br₆ or Sm₂₁Cs(SeO₃)₂₄Br₁₆, described by Ruck & Schmidt (2003). In (I), CsCl slabs separate blocks of composition $M_8(\text{SeO}_3)_9X_6$, where X = Br in the $Bi_8(SeO_3)_9Br_6$ structure. Another related compound is Rb₆LiNd₁₁Cl₁₆(SeO₃)₁₂ (Lipp & Schleid 2005). It contains only RbCl slabs which separate blocks with composition [Nd₂₉Li₄O₈(SeO₃)₂₄], analogous to the 'triple sublayers' in Fig. 2. In the Rb₆LiNd₁₁Cl₁₆(SeO₃)₁₂ structure, small Li atoms are regularly situated in metal-selenium-O-atom blocks, whereas in the case of Sm₂₁Cs(SeO₃)₂₄Br₁₆, the Cs atom is statistically distributed in similar blocks.

Experimental

The title compound was obtained in an evacuated silica ampoule from a mixture of high purity LaOCl, SeO₂ and CsCl in a 1:1:1 molar ratio. The reaction mixture was heated to 923 K and was then cooled to 473 K at a rate of 2 K h⁻¹. The product was washed with distilled water and ethanol. Small plate-shaped colorless, transparent crystals were selected from the washed and dried product.

Crystal data

$Cs_3La_{11}(SeO_3)_{12}Cl_{12}$	Mo $K\alpha$ radiation
$M_r = 3875.66$	Cell parameters from 7054
Orthorhombic, Cmca	reflections
a = 43.176 (8) Å	$\theta = 2.5 - 28.2^{\circ}$
b = 16.073 (2) Å	$\mu = 18.69 \text{ mm}^{-1}$
c = 16.037 (2) Å	T = 173 (2) K
V = 11129 (3) Å ³	Block, colorless
Z = 8	$0.09 \times 0.08 \times 0.05 \text{ mm}$
$D_x = 4.626 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART APEX CCD	6572 independent reflections
diffractometer	4369 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.061$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Sheldrick, 1998)	$h = -55 \rightarrow 52$
$T_{\min} = 0.245, T_{\max} = 0.393$	$k = -20 \rightarrow 21$

 $l = -14 \rightarrow 20$

 $T_{\rm min} = 0.245, \ T_{\rm max} = 0.393$ 30595 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0334P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 133.1504 <i>P</i>]
$vR(F^2) = 0.095$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
5572 reflections	$\Delta \rho_{\rm max} = 2.20 \ {\rm e} \ {\rm \AA}^{-3}$
253 parameters	$\Delta \rho_{\rm min} = -2.19 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

La1-O6 ⁱ	2.416 (6)	La5-O15	2.597 (6)
La1-O4	2.416 (6)	La5-O1	2.616 (6)
La1-O18 ⁱ	2.478 (6)	La5-O2	2.621 (7)
La1-O3	2.519 (6)	La5-O3	2.679 (6)
La1-Cl3	2.999 (2)	La5-O18 ^{iv}	2.702 (6)
La1-Cl9	3.0263 (16)	La6-O17	2.444 (6)
La1-Cl8	3.051 (2)	La6-O7	2.451 (7)
La1-Cl2	3.1077 (6)	La6-O10	2.478 (7)
La2-O11	2.492 (6)	La6-O12	2.493 (6)
La2-O5	2.496 (6)	Se1-017	1.691 (6)
La2-O2	2.526 (6)	Se1-O13	1.714 (6)
La2-O1	2.538 (6)	Se1-O1	1.733 (6)
La2-Cl4	2.862 (3)	Se2-O12	1.681 (6)
La2-Cl7	2.865 (3)	Se2-O16	1.699 (6)
La2-Cl6	2.944 (3)	Se2-O18	1.747 (6)
La2-Cl1	2.9855 (15)	Se3-O4	1.706 (6)
La3-09	2.488 (6)	Se3-O6	1.708 (6)
La3-O8 ⁱⁱ	2.490 (6)	Se3-O15	1.711 (7)
La3-O5	2.507 (6)	Se4-O7	1.679 (6)
La3-O6	2.563 (6)	Se4-O8	1.708 (6)
La3-O17	2.589 (6)	Se4-O2	1.741 (6)
La3-O1	2.614 (6)	Se5-O5	1.697 (6)
La3-O12	2.645 (6)	Se5-O11 ⁱ	1.705 (6)
La3-O18	2.664 (6)	Se5-O14	1.721 (6)
La3-O14	2.755 (6)	Se6-O10	1.672 (6)
La3-O15	2.776 (6)	Se6-O9	1.705 (6)
La4-O11	2.510 (6)	Se6-O3	1.729 (6)
La4-O16 ⁱⁱⁱ	2.521 (6)	Cs1-Cl7 ^v	3.424 (3)
La4-O4	2.575 (6)	Cs1-Cl4 ^{vi}	3.428 (3)
La4-O7	2.591 (7)	Cs1-Cl1 ^{vi}	3.446 (2)
La4-O2	2.602 (7)	Cs1-Cl6 ^{vii}	3.649 (3)
La4-O10	2.618 (6)	Cs2-Cl7 ^{vii}	3.458 (3)
La4-O3	2.644 (6)	Cs2-Cl6 ^{vii}	3.502 (3)
La4-O15	2.765 (6)	Cs2-Cl5 ^{viii}	3.545 (3)
La4-O14 ^{iv}	2.790 (6)	Cs2-Cl4 ^{iv}	3.634 (3)
La5-O8	2.531 (6)	Cs3-Cl4 ^{vii}	3.457 (3)
La5-O13	2.535 (6)	Cs3-Cl6 ^{vii}	3.502 (3)
La5–O14 ^{iv}	2.561 (6)	Cs3-Cl5 ^{ix}	3.545 (3)
La5-O9	2.567 (6)	Cs3-Cl7 ^v	3.632 (3)
La5-O16 ^{iv}	2.572 (6)		
O17-Se1-O13	103.6 (3)	O7-Se4-O8	103.4 (3)
O17-Se1-O1	93.7 (3)	O7-Se4-O2	93.3 (3)
O13-Se1-O1	94.5 (3)	O8-Se4-O2	94.9 (3)
O12-Se2-O16	104.4 (3)	O5-Se5-O11 ⁱ	106.6 (3)
O12-Se2-O18	94.8 (3)	O5-Se5-O14	95.0 (3)
O16-Se2-O18	95.2 (3)	O11 ⁱ -Se5-O14	96.1 (3)
O4-Se3-O6	106.9 (3)	O10-Se6-O9	105.4 (3)
O4-Se3-O15	96.3 (3)	O10-Se6-O3	95.0 (3)
O6-Se3-O15	95.3 (3)	O9-Se6-O3	95.9 (3)

Symmetry codes: (i) x, -y, -z + 1; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) x, -y + 1, -z + 1; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x, -y + \frac{1}{2}, z - \frac{1}{2}$; (vii) -x, y, z; (viii) -x, -y, -z; (ix) $-x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Note that, according to the latest edition of the International Tables for Crystallography (2002, 5th ed.), the Hermann-Maugin symbol for space group Cmca has been modified to Cmce. Except for the O atoms, all atoms were refined with anisotropic displacement parameters. The highest peak is located 3.13 Å from atom La2 and the deepest hole 0.92 Å from Cs2.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to

Figure 1

View of the crystal structure of (I), projected along the c axis.

refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*.

Dr Evgeny V. Dikarev is acknowledged for his help in conducting the study. The Russian Foundation for Basic Research (under grants RFFI-DFG # 04–03-04000 and RFFI # 05–03-32719) is gratefully acknowledged for financial support.

References

- Ben Hamida, M. & Wickleder, M. S. (2005). Z. Kristallogr. Suppl. 22, 165.
- Berdonosov, P. S., Stefanovich, S. Yu. & Dolgikh, V. A. (2000). J. Solid State
- Chem. 149, 236–241. Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.

Figure 2

View of the polyhedra around the La atoms in (I), with the $[La_{22}(SeO_3)_{24}]$ block outlined. Displacement ellipsoids are drawn at the 95% probability level.

Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.

Bruker (1998). SAINT (Version 6.01) and SMART (Version 5.059), Bruker AXS Inc., Madison, Wisconsin, USA.

Hölsä, J., Lastusaari, M. & Valkonen, J. (1997). J. Alloys Compd. 262, 299–304. Lipp, C. & Schleid, T. (2005). Z. Kristallogr. Suppl. 22, 141.

- Ruck, M. & Schmidt, P. (2003). Z. Anorg. Allg. Chem. 629, 2133–2143.
- Sheldrick, G. M., (1997), SHELXS97 and SHELXL97, University of Göttingen, Germany.
- Sheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.